Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠的贴生于基部。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠的贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝二叉。通常的花序一多歧聚伞花序。种子椭圆形,倒卵球形椭圆形,
倒三角形的,平滑的表面,具皱褶,
具瘤状的突
。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,基部尖锐,先端微凹,具环纹的背种脐,具横裂和钝,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
花冠裂片椭圆形,合蕊冠
贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常花序一多歧聚伞花序。
椭圆形,倒卵球形椭圆形,或倒三角形
,平滑
表面,具皱褶,或具瘤状
突起或
。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
椭圆形,基部尖锐,先端微凹,具环纹
背
脐,具横裂和钝
,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠的贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常的花序一多歧聚伞花序。种子椭圆形,倒卵球形椭圆形,或倒三角形的,平滑的表面,具皱褶,或具瘤状的突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,基部尖,
微凹,具环纹的背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到
。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须或二叉。通常
花序一多歧聚伞花序。种子椭圆形,倒卵
形椭圆形,或倒三角形
,平滑
表面,具皱褶,或具瘤状
突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,基部尖锐,先端微凹,具环纹背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
声明:以上例句、词性类均由互联网资源自动生成,部
未经过人工审核,其表达内容亦
代表本软件
观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭形,合蕊冠
贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常花序一
伞花序。种子椭
形,倒卵球形椭
形,或倒三角形
,平滑
表面,具皱褶,或具瘤状
突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭形,基部尖锐,先端微凹,具环纹
背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭
方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭
方程正解
对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠的贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝二叉。通常的花序一多歧聚伞花序。种子椭圆形,倒卵球形椭圆形,
倒三角形的,平滑的表面,具皱褶,
具瘤状的突
。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,基部尖锐,先端微凹,具环纹的背种脐,具横裂和钝,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆,合蕊冠
贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分叉。通常
花序一多歧聚伞花序。种子椭圆
,倒卵
椭圆
,
倒三角
,平滑
表面,具皱褶,
具瘤状
突起
肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆,基部尖锐,先端微凹,具环纹
背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆,合蕊冠
贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分叉。通常
花序一多歧聚伞花序。种子椭圆
,倒卵
椭圆
,
倒三角
,平滑
表面,具皱褶,
具瘤状
突起
肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆,基部尖锐,先端微凹,具环纹
背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常花序一多歧聚伞花序。种子椭圆形,倒卵球形椭圆形,或倒三角形
,平滑
,具皱褶,或具瘤状
突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,基部尖锐,先端微凹,具环纹背种脐,具横裂和钝肋,腹
洞棱槽从上
中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平
法给出了一类次线性椭圆方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平
法给出了一类次线性椭圆方程正解
对称性.
声明:以上例句、词性分类均由互网资源自动生成,部分未经过人工审核,其
达内容亦不代
本软件
观点;若发现问题,欢迎向我们指正。