We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是
证明,也就是透过在两个集合间建立
个
(
且映成
函数)来证明它们
元素个数相等。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是
证明,也就是透过在两个集合间建立
个
(
且映成
函数)来证明它们
元素个数相等。
声明:以、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透集合间建立
对射(
对
且映成的函数)来证明它们的
数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透过在两个集合间建立个对射(
对
且映成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审,
达内容亦不代
本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对的证明,也就是透过在两个集合间建立
个对
(
对
且映成的函数)来证明它们的元素个数相等。
声明:以上例句、词性类均由互联网资源自动生成,
经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎
我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关对射
证明,也就
透过在两个集合间建立
个对射(
对
且映成
函数)来证明它们
元素个数相等。
声明:以上例句、词类均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是射的证明,也就是透过在两个集合间建立
个
射(
成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透过在两个集合间建立个对射(
对
且映成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心射
证明,也就
透过在两个集合间建立
个
射(
且映成
函数)来证明它们
元素个数相等。
声明:以上例、词
分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
要关心的是对射的证明,也就是透过在两个集合间建立
个对射(
对
且映成的函数)来证明它
的元素个数相等。
声明:以上例句、词性分类均网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向
指正。