Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利系
矩阵和极大项,证明了这类
是半单
且没有二维交换子
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨
.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这类李代数是半单李代数且没有二维交换子代数。
声明:以上例、词
分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G
规初等交换子
,则G是不可分辨
.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
系数矩阵和极大项,证明了这类李代数是半单李代数且没有二维交换子代数。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指
。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G无限
,若G存在正规初等交
,
G
不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这类李代数半单李代数且没有二维交
代数。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等
换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系矩阵和极大项,证明了这类
是半单
且没有二维
换子
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可
辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这李代数是半单李代数且没有二维交换子代数。
声明:以上例句、词性由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G无限
,若G存在正规初等交换子
,则G
不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系矩阵和极大项,证明了这类李
半单李
且没有二维交换子
。
明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不
表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等
换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系矩阵和极大项,证明了这类
是半单
且没有二维
换子
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无,
G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用阵和极大项,证明了这类李代
是半单李代
且没有二维交换子代
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;发现问题,欢迎向我们指正。