Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片形,合蕊冠的贴生于基部。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片形,合蕊冠的贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常的花序一多歧聚伞花序。种子形,倒卵球形
形,或倒三角形的,平滑的表面,具皱褶,或具瘤状的突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子形,基部尖锐,先端微凹,具环纹的背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性方程正解的对称性.
声明:以上、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副冠裂片椭
,合蕊冠的贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常的一多歧聚
。种子椭
,倒卵球
椭
,或倒三角
的,平滑的表面,具皱褶,或具瘤状的突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭,基部尖锐,先端微凹,具环纹的背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性椭方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性椭方程正解的对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠的贴生。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常的花序一多歧聚伞花序。种子椭圆形,倒卵球形椭圆形,或倒三角形的,平滑的表面,具皱褶,或具瘤状的突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,尖锐,先端微凹,具环纹的背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
声明:以上例句、词性分类均由互联网资源自动生成,分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片形,合蕊冠的贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常的花序一多歧聚伞花序。种子形,倒卵球形
形,或倒三角形的,平滑的表面,具皱褶,或具瘤状的突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子形,基部尖锐,先端微凹,具环纹的背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近的凹性和可积性,用移动平面法给出了一类次线性方程正解的对称性.
声明:以上、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠的贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝二叉。通常的花序一多歧聚伞花序。种子椭圆形,倒卵球形椭圆形,
倒三角形的,平滑的表面,
皱褶,
状的突起
肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,基部尖锐,先端微凹,环纹的背种脐,
横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附的凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解的对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭,合蕊冠
贴生于
部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常花序一多歧聚伞花序。种子椭
,倒卵球
椭
,或倒三角
,平滑
表面,具皱褶,或具瘤状
突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭,
部尖锐,先端微凹,具环纹
背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭
方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭
方程正解
对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆,合蕊冠
贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常花序一多歧聚伞花序。种子椭圆
,倒卵球
椭圆
,或倒三
,平滑
表面,具皱褶,或具瘤状
突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆,基部尖锐,先端微凹,具环纹
背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线项在零点附近
凹
和可积
,用移动平面法给出了一类次线
椭圆方程正解
对
.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线项在零点附近
凹
和可积
,用移动平面法给出了一类次线
椭圆方程正解
对
.
声明:以上例句、词分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆形,合蕊冠贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常花序一多歧聚伞花序。种子椭圆形,
卵球形椭圆形,或
形
,平滑
表面,具皱褶,或具瘤状
突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆形,基部尖锐,先端微凹,具环纹背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线项在零点附近
凹
和可积
,用移动平面法给出了一类次线
椭圆方程正解
对称
.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线项在零点附近
凹
和可积
,用移动平面法给出了一类次线
椭圆方程正解
对称
.
声明:以上例句、词分类
由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副花冠裂片椭圆,合蕊冠
贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分叉。通常
花序一多歧聚伞花序。种子椭圆
,倒卵
椭圆
,
倒三角
,平滑
表面,具皱褶,
具瘤状
突起
肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆,基部尖锐,先端微凹,具环纹
背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。
Corona lobes elliptic, adnate to base of gynostegium.
副冠裂片椭圆
,合蕊冠
贴生于基部。
Tendril unbranched or bifurcate. Inflorescence usually a polychasium. Seeds elliptic, obovoid-elliptic, or obtriangular, surface smooth, corrugated, or with strumose protuberance or ribs.
卷须不分枝或二叉。通常序一多歧
序。种子椭圆
,倒卵球
椭圆
,或倒三角
,平滑
表面,具皱褶,或具瘤状
突起或肋。
Seeds elliptic, base sharp, apex retuse, back chalazal knot zonate, with transverse and obtuse ribs, ventral holes furrowed from upper middle to apex.
种子椭圆,基部尖锐,先端微凹,具环纹
背种脐,具横裂和钝肋,腹面洞棱槽从上面中间到先端。
With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
Abstract With the concavity and integrability of sublinear terms near zero,the symmetry results for a class of sublinear elliptic equations are given by making use of the moving-plane method.
摘 要 本文利用次线性项在零点附近凹性和可积性,用移动平面法给出了一类次线性椭圆方程正解
对称性.
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。