We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是
射的证明,也就是透过在两个集合间建立
个
射(



成的函数)来证明它们的元素个数相等。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是
射的证明,也就是透过在两个集合间建立
个
射(



成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
,双
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对
的证明,也就是透过在两个集合间建立
个对
(
对
且映成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源

成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关

对射
证明,也就
透过在两个集合间建立
个对射(
对
且映成
函数)来证明它们
元素个数相等。
声明:以上例句、词
类均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透
在两个集合间建立
个对射(
对
且映成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经

审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
,双
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是
的证明,也就是透过在两个集合间建立
个
(




的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生
,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
们主要关心的是对射的证明,也就是透过在两个集合间建立
个对射(
对
且映成的函数)来证明它们的元素个数相等。
声明:以上例
、词性分类均由互

源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向
们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.

主要关心的是对射的证明,也就是透过在两个集合间建立
个对射(
对
且映成的函数)来证明它
的元素个数相等。
声明:以上例句、词性分类均由

资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向
指正。
向单
,

We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对
的证明,也就是透过在两个集合间建立
个对
(
对
且映
的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自

,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是
射的证明,也就是透过在两个集合间建立
个
射(



成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。