Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这类李代数是半单李代数有二维交换子代数。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这类李代数是半单李代数且没有二维交换子代数。
声明:以上例句、词性分类均网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这类李代数是半单李代数有二维交换子代数。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
G是无限
,若G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和,证明了这类李代数是半单李代数且没有二维交换子代数。
声明:以上例、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交
子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明李代数是半单李代数且没有二维交
子代数。
声明:以上例句、词性分均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,这类李代数是半单李代数且没有二维交换子代数。
声:以上
句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限,若G存在正规初等交换子
,则G是不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这类李代数是半单李代数且有
维交换子代数。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G无限
,若G存在正规初等
,
G
可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数矩阵和极大项,证明了这类李代数半单李代数且没有二维
代数。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦代表本软件的观点;若发现问题,欢迎向我们指正。
Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G,若G存在正规初等交换子
,则G
不可分辨的.
Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
利用系数极大项,证明了这类李代数
半单李代数且没有二维交换子代数。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。